正四面体の箱など
2018-05-12


◆鳥海太郎展
禺画像]
2018/5/21(月)- 5/16(土)
養清堂画廊(銀座5-5-16)
布施知子さんのご夫君の版画家・鳥海太郎さんの個展です。
写真の作品の題名は「見上げる」

◆正四面体の箱
禺画像]
蓋とボディが一体化した正四面体の箱ができた。閉じるときの組み合わせが面白い。1対2で近似させてもよいが、1対2.02...という長方形を用いるとぴったり合う。15cm正方形用紙の場合、「ふたつ折り」のときに1.5mmほどずらして折って切るとよい。

この折り目の構造は、正六角形用紙を用いると対称性が高くなる。その場合、閉じると四面体はツインとなる。

◆『北京折畳』と『折畳几何学』
『折る幾何学』の簡体中国語版に関して、翻訳者とすこしとやりとりをした。ついでに、「最近、『折りたたみ北京』(『北京折畳』ハオ・ジンファン)というSF小説を読みました」と書いたところ、翻訳者氏も読んでいて、「現実の北京の地名もでてきて臨場感がある」という話だった。「札幌の地下街に行ったさい、街の下にもうひとつの空の見えない街があることに、あの小説の描写を思い出した」という旨のことも書いてあった。

なお、『折る幾何学』の簡体中国語版の題名も、「折畳」を含む、『折畳几何学』である。(ただし「畳」は異字)。「原題にも『紙』がないので、こうしました」ということだった。

◆数学短歌
『数学セミナー』に投稿した数学短歌が、一首採用された。よかった。

ボツになったものでは、以下が、解説を含めて、ネタとしてある意味自信作だったのだが...
(あくまでインサイド・ジョークとしてウケを狙ったもので、選者の判断にくちばしをはさむものではありません。為念)

題:ベクトル
これやこの行くも帰るも別れては知るも知らぬもベクトルの積
余をこめてTriの空値は図るともよにベクトルの積はゆるさじ

解説:
一首目。「これが、計算結果がもととは違う向きのベクトルになるベクトルの外積というものか。意味はよくわからないが、とりあえず計算方法はわかった」ということをよんだ古歌。作者は、数セミ丸である。


続きを読む

[折り紙]
[かたち・幾何学]
[もろもろ]

コメント(全0件)
コメントをする


記事を書く
powered by ASAHIネット